RC Beam Design to Eurocode 2

Input data

Beam and cross section dimensions

Beam length - $L = 10 \, \text{m}$

Cross section dimensions: height - $h = 700 \, \text{mm}$, width - $b = 250 \, \text{mm}$

Loads

Uniformly distributed load - q = 12 kN/m (total, factored)

Materials

Concrete

Characteristic compressive cylinder strength - f_{ck} = 20 MPa

Partial safety factor fWor concrete - $\gamma_c = 1.5$, $\alpha_{cc} = 0.85$

Design compressive cylinder strength $-f_{cd} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_{c}} = 11.33 \text{ MPa}$

Factor for effective compression zone depth - λ = 0.8

Effective compressive strength factor - $\eta = 1$

Ultimate compressive strain - $\varepsilon_{cu3} = 0.0035$

Mean value of axial tensile strength - $f_{\text{ctm}} = 0.3 \cdot \left(\frac{f_{\text{ck}}}{\text{MPa}}\right)^{\frac{2}{3}} \cdot \text{MPa} = 2.21 \text{ MPa}$

Steel

Longitudinal reinforcement

Characteristic yield strength - $f_{yk} = 500 \text{ MPa}$

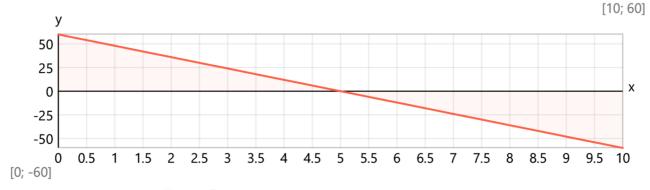
Partial safety factor for steel - $\gamma_s = 1.15$

Design yield strength $-f_{yd} = \frac{f_{yk}}{\gamma_s} = 434.78 \text{ MPa}$

Modulus of elasticity - E_s = 200000 MPa

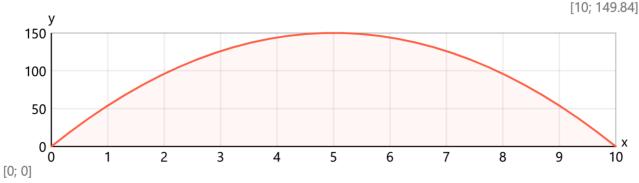
Shear reinforcement

Characteristic yield strength - $f_{ywk} = 500 \text{ MPa}$


Design yield strength - $f_{ywd} = \frac{f_{yk}}{\gamma_s} = 434.78 \text{ MPa}$

Results

Internal forces


Support reaction - $A = \frac{q \cdot L}{2} = 60 \text{ kN}$

Shear force diagram - $V(x) = A - q \cdot x$

Design shear force - $V_{\rm Ed}$ = A = $60\,{\rm kN}$

Bending moment diagram - $M(x) = A \cdot x - \frac{q \cdot x^2}{2}$

Design bending moment - $M_{Ed} = \frac{q \cdot L^2}{8} = 150 \text{ kNm}$

Bending design

Concrete cover to the center of reinforcement - d_1 = 50 mm

Effective cross section depth - $d = h - d_1 = 650 \text{ mm}$ cm

Relative design bending moment - $m_{\rm Ed} = \frac{M_{\rm Ed}}{b \cdot d^2 \cdot \eta \cdot f_{\rm cd}} = 0.125$

Compressive zone depth - $x = \frac{d}{\lambda} \cdot (1 - \sqrt{1 - 2 \cdot m_{Ed}}) = 109.14 \text{ mm}$

Relative compression zone depth - $\xi = \frac{x}{d} = 0.168$

Design reinforcement yield strain - $\varepsilon_{\rm yd}$ = $\frac{f_{\rm yd}}{E_{\rm s}}$ = 0.00217

Relative depth of compression zone at yielding of bottom reinforcement

$$\xi_{\rm yd} = \frac{\varepsilon_{\rm cu3}}{\varepsilon_{\rm cu3} + \varepsilon_{\rm yd}} = 0.617$$

Limit compression zone depth - $\xi_{lim} = \xi_{yd} = 0.617$

 $(\xi_{\rm lim} = \xi_{\rm yd} \text{ for elastic and } \xi_{\rm lim} = 0.45 \text{ for plastic analysis})$

 ξ = 0.168 $\leq \xi_{\text{lim}}$ = 0.617 - Compressive reinforcement is **NOT** required.

Lever arm of internal forces - $z = d - 0.5 \cdot \lambda \cdot x = 606.34 \text{ mm}$

Required main reinforcement - $\frac{M_{Ed}}{z \cdot f_{vd}} = 568.98 \text{ mm}^2$

Selected $n_b = 3$ bars with size $\mathcal{O}_L = 20 \text{ mm}$

Provided main reinforcement $A_{sL} = \frac{n_b \cdot \pi \cdot \emptyset_L^2}{4} = 942.48 \text{ mm}^2$

Reinforcement ratio - $\rho_L = \frac{A_{sL}}{b \cdot d} = 0.0058$

Minimum reinforcement ratio

$$\rho_{\min} = \max\left(\frac{0.26 \cdot f_{\text{ctm}}}{f_{\text{yk}}}; 0.0013\right) = 0.0013 < \rho_{\text{L}} = 0.0058$$

Maximum reinforcement ratio - $\rho_{\text{max}} = 0.04 > \rho_{\text{L}} = 0.0058$

Shear design

Shear capacity without reinforcement

$$k = \min\left(1 + \sqrt{\frac{200 \text{ mm}}{d}}; 2\right) = 1.55, C_{\text{Rd_c}} = \frac{0.18}{\gamma_{\text{c}}} = 0.12, k_1 = 0.15, \sigma_{\text{cp}} = 0 \text{ MPa}$$

$$v_{\text{min}} = 0.035 \cdot k^{\frac{3}{2}} \cdot \sqrt{\frac{f_{\text{ck}}}{\text{MPa}}} \cdot \text{MPa} = 0.303 \text{ MPa}$$

$$V_{\text{Rd_c_}} = \left(C_{\text{Rd_c}} \cdot k \cdot \left(\frac{100 \cdot \rho_{\text{L}} \cdot f_{\text{ck}}}{\text{MPa}} \right)^{\frac{1}{3}} \cdot \text{MPa} + k_1 \cdot \sigma_{\text{cp}} \right) \cdot b \cdot d = 68.63 \text{ kN}$$

Minimum shear resistance

$$V_{\text{Rd_c_min}} = (v_{\text{min}} + k_1 \cdot \sigma_{\text{cp}}) \cdot b \cdot d = 49.31 \text{ kN}$$

$$V_{\text{Rd_c}} = \max(V_{\text{Rd_c_min}}; V_{\text{Rd_c}}) = 68.63 \text{ kN}$$

Design check:

 $V_{\rm Ed}$ = $60\,{\rm kN} \le V_{\rm Rd_c}$ = $68.63\,{\rm kN}$. Shear reinforcement is **NOT** required by calculations!

Nominal reinforcement will be provided as follows:

Shear links with $n_w = 2$ legs and diameter - $d_w = 6$ mm

Area of one leg -
$$A_{\text{sw1}} = \pi \cdot \left(\frac{d_{\text{w}}}{2}\right)^2 = 28.27 \text{ mm}^2$$

Maximum stirrup spacing - $s_{\text{max}} = \min(0.75 \cdot d; 300 \text{ mm}) = 300 \text{ mm}$

Provided stirrup spacing - $s = s_{max} = 300 \text{ mm}$

Provided shear reinforcement area - $A_{sw} = n_w \cdot A_{sw1} \cdot \frac{1 \text{ m}}{s} = 188.5 \text{ mm}^2 / \text{m}$

Reinforcement ratio -
$$\rho_{\rm w} = \frac{A_{\rm sw}}{s \cdot h} = 0.00251$$

$$\rho_{\text{w_min}} = \frac{0.08 \cdot \sqrt{\frac{f_{\text{ck}}}{\text{MPa}}} \cdot \text{MPa}}{f_{\text{yk}}} = 0.000716 < \rho_{\text{w}} = 0.00251$$

about:blank